

ROAD MAP TO ACHIEVABLE SUSTAINABILITY IN FASHIONABLE DENIM MANUFACTURING

'The future is exciting'

WATER CONSUMPTION IN DENIM MANUFACTURING

AVERAGE WATER CONSUMPTION PER JEANS PRODUCED

ESTIMATED ANNUAL PRODUCTION OF JEANS

TOTAL WATER CONSUMPTION IN JEANS PRODUCTION

A Recent Denim Life Cycle Assessment (LCA) analysis (Levi Strauss Co., 2009; Ademe, 2011) reveals that **more than 3000 Lt of water is used** during the full product life cycle of a single pair of jeans.

This is twice the water supply need of all inhabitants of one of the most populated cities of Europe, Madrid (Spain) (Instituto Nacional de Estadistica, 2013; Europa Press, 2009)

70 L

5000 million pairs

350 million L

SECOND DIRTIEST INDUSTRY

Fashion Industry is the second largest polluter in the world.

Chemicals are used during fiber production, dyeing, bleaching, and wet processing of each of our garments.

The heavy use of chemicals in cotton farming is causing diseases and premature death among cotton farmers, along with massive freshwater and ocean water pollution and soil degradation.

Some of these substances are also harmful to the consumer.

TOXIC THREADS

Untreated toxic wastewaters from textiles factories are dumped directly into the rivers.

Wastewater contains toxic substances such as lead, mercury and arsenic, among others. These are extremely harmful for the aquatic life and the health of the millions people living by those rivers banks. The contamination also reaches the sea and eventually spreads around the globe.

Huge quantity of fresh water are used for the dyeing and finishing process for all of our clothes.

1.5 TRILLION

LITERS OF WATER are used by the fashion industry each year

5,2%

OF THE WASTE in our landfills are textiles

20% OF INDUSTRIAL

WATER POLLUTION comes from textiles treatment and dying

90%

OF WASTEWATERS

in developing countries is discharged into rivers without treatment

200,000 TONS

OF DYES

are lost to effluents

every year

10 %
GLOBAL
CARBON
EMISSION

200 TONS

OF FRESH WATER are needed to dye one ton of fabric

750 MILLION

PEOPLE IN THE WORLD DO NOT have access to drinking water

sustainyourstyle.org

SUSTAINABLE FASHION IS THE FUTURE AND WE NEED TO BE PART OF IT

ETHICS+
AESTHETICS=
SUSTAINABLE
FASHION

AS A14 DENIM WE ARE TAKING IMPORTANT STEPS TOWARDS SUSTAINABILITY.

SUSTAINABLE PRODUCTION SHOULD START FROM THE VERY BEGINING OF THE DEVELOPMENT STAGE.

OUR DESIGN TEAM HAS BEEN WORKING AND FOCUSING ON SUSTAINABILITY FOR MANY YEARS.

WHAT WE DO

A14 DESIGN TEAM IS ALREADY USING JEANOLOGIA E-FLOW AND OZONE G2 MACHINES FOR THE DEVELOPMENTS. THESE MACHINERY MADE FOR THE HIGHEST SUSTAINABILITY GOALS.

IN PRODUCTION WE USE LASER AND LOW LIQUOR RATIO LAUNDRY-DYEING MACHINERY.

WE USE AN ENVIRONMENTAL SCORING PLATFORM FROM JEANOLOGIA CALLED EIM SCORE.

SUSTAINABLE DENIM MANUFACTURING

Use LESS WATER and LESS ENERGY. Keeping your waste water clean is a goal.

HOW CAN WE DO THIS?

To make sustainable jeans and production you can follow below tools and machinery.

LASER

LOW LIQUOR RATIO LAUNDRY MACHINERY

NANO BUBBLE TECHNOLOGY

OZONE

BAN HAZARDOUS CHEMICALS

such as **potassium permanganate** and Sodium- Hypochlorite.

USE SYNTHETIC STONE to get

faded effects on your jeans but still reduce dirty waste water.

LASER TECHNOLOGY

Laser has been a replacement for the traditional methods of denim - finishing like sandblasting, stone washing etc. It is the fastest growing and accepted technique in the denim market, as this technology has made denims GO GREEN.

WHY CHOOSE LASER TECHNOLOGY

The designs can be placed anywhere on the garment depending on the requirement.

Much **faster** process as compared to the conventional finishing process.

Suitable for a wide range of materials.

ECO friendly with comparatively negligible use of water with no use of chemicals.

Saves denim fabric from damages caused by traditional tools, chemicals, stones and bleaches etc.

LOW LIQUOR RATIO LAUNDRY MACHINERIES

Design & Technology of machinery's drum is ideal for sustainable production. These types of machineries are decreasing your water, energy and chemical consumption dramatically.

Please see comparison table to understand the differences.

	CONVENTIONAL	LOW LIQUOR
Desizing (L/KG)	8-10	2-3
Enzyme Wash (L/KG)	6-8	2-3
Stone wash (L/KG)	6-8	2-3
Rinse (L/KG)	8-10	2-3
Bleach (L/KG)	8-10	3-4
Neutralization (L/KG)	6-8	2-3
Detergent (L/KG)	6-8	2-3
Tint (L/KG)	6-8	2-3
Softener (L/KG)	6-8	2-3

NANO-BUBBLE TECHNOLOGY

How ultra low liquor ratio technology works

Air, water and chemicals are introduced into the ultra low liquor ratio machine, creating a mixture of nano-bubbles and moist air.

The mixture is injected into a rotating tumbler containing the denim garments.

The nano-bubbles layer transports the chemicals to the garment, creating effects in a closed system.

ORGANIC BLEACHING AGENTS & ENZYMES

WASHED BY THE ATMOSPHERE – Ozone naturally has strong oxidizing capabilities, which can **destroy indigo dyes** on the fabric's surface, **creating a bleached appearance.**

ENVIRONMENTALLY FRIENDLY since ozonized water can easily be deozonized by UV radiation. **Ozone** works quickly, ozone requires fewer rinses, while chemical bleaching or stone washing uses six to seven washes and rinses.

Ozone Finishing for Denim Reduces Environmental Impact, Processing Costs and Processing Time.

Use **ORGANIC BLEACHING AGENT** and **ENZYMES** as an ecological alternative **to fade your denim**. You will still get high and low effects on your jeans.

The advantages of these treatment;

NO DAMAGE NON HAZARDOUS ECOLOGICAL

We should **Ban hazardous chemicals** as much as possible to make sustainable jeans; such as **Potassium Permanganate and Sodium- Hypochlorite.**

BANNING POTASSIUM PERMANGANATE

Spray treatment with pottassium permanganate (Kmn04) has been traditionally used in the garment industry as a very effective way to create the popular used look on denim.

90% of bleaching processes use potassium permanganate which is sprayed on the jeans by workers, which constituting a risk for humans and the environment. In addition, manganese is a heavy metal with no biodegradability.

It would be ideal to ban potassium permanganate because of the risk on both workers and environment.

MORE SYNTHETIC STONE

Synthetic Stones have been introduced in order to find alternative to pumice stone. These synthetic stones are produced from abrasive materials such as **silicate**, **plastic**, **rubber or portland cement**.

Synthetic stones are;
More durable than pumice stone.
Can be repeatedly used more than 5000 cyle.
They cause less damage to machines and garments.

Gives better **hand feel** and **rich look**.

LESS PUMICE STONE

Pumice is a **natural volcanic stone**, which is used in the **traditional stone washing** of denim garments.

This treatment causes a large amount of sludge which will end up as waste in the environment. Also, residues need to be removed from the pockets and folds of the garment, consuming even more water.

ENVIRONMENTAL EFFECT OF DIFFERENT PROCESSES

SUSTAINABLE

TREATMENT

TRADITIONAL

TREATMENT

LASER

LASER

ENZYME WASH WITH SYNTHETIC STONE

PRETREATMENT

ORGANIC BLEACHING AGENT

BLEACHING ENZYME (spray)

WHISKERS

HAND SAND SCRAPING

ENZYME WASH WITH PUMICE STONE

HYPOCHOLORITE BLEACHING

PERMANGANATE SPRAY

SUSTAINABLE		TRADITIONAL	
6,2	Water Impact (L/Garment)	46,4	
0,79	Energy Impact (KWH/Garment)	2,27	
18	Chemical Impact (Garment)	72,5	
26,5	Worker Impact (Garment)	90	
© 22	EIM SCORE	@ 67	

Trust

Quality

Fashion Trends

Transparency

Certification

Sustainable Measuring

Partnership

GLOBAL CERTIFICATIONS

WE BELIEVE IN
SUSTAINABLE
DEVELOPMENT
AND PRODUCTION.

IT IS NOT MAGIC
OR A WAY TO SHOW
OFF, IT IS A SIMPLE
FACT WHICH IS
ABSOLUTELY
UNAVOIDABLE

LASER PRETREATMENT

LASER

E-FLOW WASH
WITH SYNTHETIC
STONE

ORGANIC BLEACHING AGENT

BLEACHING ENZYME (spray)

LASER PRETREATMENT

LASER

E-FLOW WASH
WITH SYNTHETIC
STONE

ORGANIC BLEACHING AGENT

BLEACHING ENZYME

LASER PRETREATMENT

LASER

E-FLOW WASH
WITH SYNTHETIC
STONE

LASER PRETREATMENT

LASER

STONE WASH WITH LOW FLOTTE

LASER PRETREATMENT

LASER

ENZYME WASH
WITH SYNTHETIC
STONE

ORGANIC BLEACHING AGENT

BLEACHING ENZYME (spray)

LASER PRETREATMENT

LASER

ENZYME WASH
WITH SYNTHETIC
STONE

LASER PRETREATMENT

LASER

E-FLOW WASH
WITH SYNTHETIC
STONE

LASER PRETREATMENT

LASER

E-FLOW WASH
WITH SYNTHETIC
STONE

LASER PRETREATMENT

LASER

LOW FLOTTE stone wash

LASER PRETREATMENT

LASER

LOW FLOTTE stone wash

LASER PRETREATMENT

LASER

E-FLOW WASH
WITH SYNTHETIC
STONE

ORGANIC BLEACHING AGENT

BLEACHING ENZYME SPRAY

LASER PRETREATMENT

LASER

E-FLOW WASH
WITH SYNTHETIC
STONE

LASER PRETREATMENT

LASER

E-FLOW WASH
WITH SYNTHETIC
STONE

LASER PRETREATMENT

LASER

SYNTHETIC STONE WASH

LASER PRETREATMENT

LASER

ENZYME WASH
WITH SYNTHETIC
STONE

BLEACHING ENZYME SPRAY